Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 4(5): 101023, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37116500

ABSTRACT

Accurate assessment of antibiotic susceptibility is critical for treatment of antimicrobial resistant (AMR) infections. Here, we examine whether antimicrobial susceptibility testing in media more physiologically representative of in vivo conditions improves prediction of clinical outcome relative to standard bacteriologic medium. This analysis reveals that ∼15% of minimum inhibitory concentration (MIC) values obtained in physiologic media predicted a change in susceptibility that crossed a clinical breakpoint used to categorize patient isolates as susceptible or resistant. The activities of antibiotics having discrepant results in different media were evaluated in murine sepsis models. Testing in cell culture medium improves the accuracy by which MIC assays predict in vivo efficacy. This analysis identifies several antibiotics for treatment of AMR infections that standard testing failed to identify and those that are ineffective despite indicated use by standard testing. Methods with increased diagnostic accuracy mitigate the AMR crisis via utilizing existing agents and optimizing drug discovery.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Microbial Sensitivity Tests
2.
EBioMedicine ; 89: 104461, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36801104

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS: Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS: We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION: The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING: U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Sepsis , Mice , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Anti-Infective Agents/pharmacology , Bacteria , Sepsis/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Mammals
3.
PNAS Nexus ; 1(3): pgac113, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35967980

ABSTRACT

Glycosidases are hydrolytic enzymes studied principally in the context of intracellular catabolism within the lysosome. Therefore, glycosidase activities are classically measured in experimentally acidified assay conditions reflecting their low pH optima. However, glycosidases are also present in the bloodstream where they may retain sufficient activity to participate in the regulation of glycoprotein half-lives, proteostasis, and disease pathogenesis. We have, herein, established at physiological pH 7.4 in blood plasma and sera the normal ranges of four major glycosidase activities essential for blood glycoprotein remodeling in healthy mice and humans. These activities included ß-galactosidase, ß-N-acetylglucosaminidase, α-mannosidase, and α-fucosidase. We have identified their origins to include the mammalian genes Glb1, HexB, Man2a1, and Fuca1. In experimental sepsis, excursions of glycosidase activities occurred with differences in host responses to discrete bacterial pathogens. Among similar excursions in human sepsis, the elevation of ß-galactosidase activity was a prognostic indicator of increased likelihood of patient death.

4.
JAMA Netw Open ; 5(1): e2145669, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35089353

ABSTRACT

Importance: A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants. Objective: To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents. Design, Setting, and Participants: This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021. Exposures: Testing for SARS-CoV-2 and influenza A and B viruses. Main Outcomes and Measures: SARS-CoV-2 and influenza infection status and quantitative viral load were determined. Results: Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone). Conclusions and Relevance: In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Orthomyxoviridae/isolation & purification , SARS-CoV-2/isolation & purification , Smartphone , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , United States , Young Adult
5.
J Intensive Care Soc ; 21(4): 305-311, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34093732

ABSTRACT

PURPOSE: To evaluate the impact of pressure-regulated volume control (PRVC/VC+) use on delivered tidal volumes in patients with acute respiratory distress syndrome (ARDS) or at risk for ARDS. MATERIALS AND METHODS: Retrospective study of mechanically ventilated adult patients with severe sepsis or septic shock. RESULTS: A total of 272 patients were divided into patients with recognized ARDS, patients without ARDS, and patients with unrecognized ARDS. Over 90% of patients were ventilated with PRVC on admission, resulting in delivered tidal volumes significantly higher than set tidal volumes among all groups at all time points, even after ARDS recognition (p < 0.001). Tidal volumes were lower for patients with pulmonary sepsis as compared to those with a nonpulmonary origin (p < 0.001). CONCLUSIONS: Using PRVC promotes augmented delivered tidal volumes, often in excess of 6 mL/kg ideal body weight. Correct recognition of ARDS and having pulmonary sepsis improves compliance with low-stretch protocol ventilation.

6.
IEEE J Transl Eng Health Med ; 6: 1600212, 2018.
Article in English | MEDLINE | ID: mdl-30324035

ABSTRACT

The health of patients in the intensive care unit (ICU) can change frequently and inexplicably. Crucial events and activities responsible for these changes often go unnoticed. This paper introduces healthcare event and action logging (HEAL) which automatically and unobtrusively monitors and reports on events and activities that occur in a medical ICU room. HEAL uses a multimodal distributed camera network to monitor and identify ICU activities and estimate sanitation-event qualifiers. At the core is a novel approach to infer person roles based on semantic interactions, a critical requirement in many healthcare settings where individuals' identities must not be identified. The proposed approach for activity representation identifies contextual aspects basis and estimates aspect weights for proper action representation and reconstruction. The flexibility of the proposed algorithms enables the identification of people roles by associating them with inferred interactions and detected activities. A fully working prototype system is developed, tested in a mock ICU room and then deployed in two ICU rooms at a community hospital, thus offering unique capabilities for data gathering and analytics. The proposed method achieves a role identification accuracy of 84% and a backtracking role identification of 79% for obscured roles using interaction and appearance features on real ICU data. Detailed experimental results are provided in the context of four event-sanitation qualifiers: clean, transmission, contamination, and unclean.

7.
EBioMedicine ; 36: 73-82, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30245056

ABSTRACT

BACKGROUND: There is an urgent need for rapid, sensitive, and affordable diagnostics for microbial infections at the point-of-care. Although a number of innovative systems have been reported that transform mobile phones into potential diagnostic tools, the translational challenge to clinical diagnostics remains a significant hurdle to overcome. METHODS: A smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) system was developed for pathogen ID in urinary sepsis patients. The free, custom-built mobile phone app allows the phone to serve as a stand-alone device for quantitative diagnostics, allowing the determination of genome copy-number of bacterial pathogens in real time. FINDINGS: A head-to-head comparative bacterial analysis of urine from sepsis patients revealed that the performance of smaRT-LAMP matched that of clinical diagnostics at the admitting hospital in a fraction of the time (~1 h vs. 18-28 h). Among patients with bacteremic complications of their urinary sepsis, pathogen ID from the urine matched that from the blood - potentially allowing pathogen diagnosis shortly after hospital admission. Additionally, smaRT-LAMP did not exhibit false positives in sepsis patients with clinically negative urine cultures. INTERPRETATION: The smaRT-LAMP system is effective against diverse Gram-negative and -positive pathogens and biological specimens, costs less than $100 US to fabricate (in addition to the smartphone), and is configurable for the simultaneous detection of multiple pathogens. SmaRT-LAMP thus offers the potential to deliver rapid diagnosis and treatment of urinary tract infections and urinary sepsis with a simple test that can be performed at low cost at the point-of-care. FUND: National Institutes of Health, Chan-Zuckerberg Biohub, Bill and Melinda Gates Foundation.


Subject(s)
Sepsis/diagnosis , Sepsis/etiology , Smartphone , Urinary Tract Infections/diagnosis , Urinary Tract Infections/etiology , Animals , Disease Models, Animal , Humans , Mice , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Reproducibility of Results , Sensitivity and Specificity , Sepsis/microbiology , Urinalysis/methods , Urinary Tract Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...